
Tribler Documentation
Release 6.6

Tribler devs

May 23, 2017

Contents

1 Tribler 3
1.1 Obtaining the latest release . 3
1.2 Obtaining support . 3
1.3 Contributing . 4
1.4 Setting up your development environment . 4
1.5 Running Tribler from the repository . 4
1.6 Packaging Tribler . 4
1.7 Submodule notes . 4

2 How to contribute to the Tribler project? 5
2.1 Checking out the Stabilization Branch . 5
2.2 Reporting bugs . 5
2.3 Pull requests . 6

3 Branching model and development methodology 7
3.1 Branching model . 7
3.2 Tags . 7
3.3 Setting up the local repo . 8
3.4 Working on new features or fixes . 8
3.5 Getting your changes merged upstream . 9
3.6 Misc guidelines . 9

4 Setting up your development environment 11
4.1 Windows . 11
4.2 OS X . 15
4.3 MacPorts . 15
4.4 HomeBrew . 15
4.5 Tribler . 17
4.6 Notes . 17
4.7 Linux . 18

5 Building Tribler 21
5.1 Windows . 21
5.2 OS X . 22
5.3 Debian and derivatives . 23
5.4 Other Unixes . 23

i

6 Tribler REST API 25
6.1 Overview . 25
6.2 Making requests . 25
6.3 Error handling . 25
6.4 Download states . 26
6.5 Endpoints . 26

7 Twisted in Tribler 49
7.1 Generator functions . 49
7.2 Yielding Deferreds . 49
7.3 Caveats . 50
7.4 Further reading . 50

8 Indices and tables 53

HTTP Routing Table 55

Python Module Index 57

ii

Tribler Documentation, Release 6.6

Contents:

Contents 1

Tribler Documentation, Release 6.6

2 Contents

CHAPTER 1

Tribler

Towards making Bittorrent anonymous and impossible to shut down.

Developers usually hang out in the official IRC channel #tribler @ FreeNode (click here for direct a webchat window)

We use our own dedicated Tor-like network for anonymous torrent downloading. We implemented
and enhanced the Tor protocol specifications plus merged them with Bittorrent streaming. More info:
https://github.com/Tribler/tribler/wiki Tribler includes our own Tor-like onion routing network with hid-
den services based seeding and end-to-end encryption, detailed specs: https://github.com/Tribler/tribler/wiki/
Anonymous-Downloading-and-Streaming-specifications

The aim of Tribler is giving anonymous access to online (streaming) videos. We are trying to make privacy, strong
cryptography and authentication the Internet norm.

Tribler currently offers a Youtube-style service. For instance, Bittorrent-compatible streaming, fast search, thumbnail
previews and comments. For the past 9 years we have been building a very robust Peer-to-Peer system. Today Tribler
is robust: “the only way to take Tribler down is to take The Internet down” (but a single software bug could end
everything).

We make use of submodules, so remember using the –recursive argument when cloning this repo.

Obtaining the latest release

Just click here and download the latest package for your OS.

Obtaining support

If you found a bug or have a feature request, please make sure you read our contributing page and then open an issue.
We will have a look at it ASAP.

3

http://webchat.freenode.net/?channels=tribler
https://github.com/Tribler/tribler/wiki
https://github.com/Tribler/tribler/wiki/Anonymous-Downloading-and-Streaming-specifications
https://github.com/Tribler/tribler/wiki/Anonymous-Downloading-and-Streaming-specifications
https://github.com/Tribler/tribler/releases/latest
http://tribler.readthedocs.io/en/devel/contributing.html
https://github.com/Tribler/tribler/issues/new

Tribler Documentation, Release 6.6

Contributing

Contributions are very welcome! If you are interested in contributing code or otherwise, please have a look at our
contributing page. Have a look at the issue tracker if you are looking for inspiration :).

Setting up your development environment

We support development on Linux, OS X and Windows. We have written documentation that guides you through
installing the required packages when setting up a Tribler development environment. See our Linux development
guide for the guide on setting up a development environment on Linux distributions. See our Windows development
guide for setting everything up on Windows. See our OS X development guide for the guide to setup the development
environment on OS X. For German translations, see here.

Running Tribler from the repository

First clone the repository:

git clone --recursive git@github.com:Tribler/tribler.git

or, if you haven’t added your ssh key to your github account:

git clone --recursive https://github.com/Tribler/tribler.git

Second, install the dependencies.

Done! Now you can run tribler by executing the tribler.sh script on the root of the repository:

./tribler.sh

On Windows, you can use the following command to run Tribler:

python Tribler\Main\tribler.py

Packaging Tribler

We have written guides on how to package Tribler for distribution on various systems. Please take a look here.

Submodule notes

• As updated submodules are in detached head state, remember to check out a branch before committing changes
on them.

• If you forgot to check out a branch before doing a commit, you should get a warning telling you about it. To get
the commit to a branch just check out the branch and do a git cherry-pick of the commit.

• Take care of not accidentally committing a submodule revision change with git commit -a.

• Do not commit a submodule update without running all the tests first and making sure the new code is not
breaking Tribler.

4 Chapter 1. Tribler

http://tribler.readthedocs.io/en/devel/contributing.html
http://tribler.readthedocs.io/en/devel/contributing.html
https://github.com/Tribler/tribler/issues
http://tribler.readthedocs.io/en/devel/development/development_on_linux.html
http://tribler.readthedocs.io/en/devel/development/development_on_linux.html
http://tribler.readthedocs.io/en/devel/development/development_on_windows.html
http://tribler.readthedocs.io/en/devel/development/development_on_windows.html
http://tribler.readthedocs.io/en/devel/development/development_on_osx.html
http://tribler.readthedocs.io/de/devel
http://tribler.readthedocs.io/en/devel/building/building.html

CHAPTER 2

How to contribute to the Tribler project?

Checking out the Stabilization Branch

The stabilization branch next contains the most up to date bugfixes. If your issue cannot be reproduced there, it is
most likely already fixed.

To backup your Tribler installation and checkout the latest version of the stabilization branch, please perform the
following steps. * Copy the .Tribler folder to a safe location on your system (for instance the desktop) Make
sure to leave the original folder on its original location. This folder is located at ~/.Tribler/ (Linux/OS X) or
%APPDATA\.Tribler (Windows). * Remove the tribler installation folder. * Go to the latest tested version of
Tribler and under ‘Build Artifacts’, download the package appropriate to your operating system. * Install/unzip this
package.

To revert back to your original version of Tribler, download the installer again and install it. Afterwards you can
restore your backed up Tribler data folder.

Reporting bugs

• Make sure the issue/feature you want to report doesn’t already exist.

• If you want to report more than one bug or feature, create individual issues for each of them.

• Use a clear descriptive title.

• Provide at least the following information:

– The version of Tribler that you are using, if you are running from a branch, branch name and commit
ID.

– The OS and version you are running.

– Step by step instructions to reproduce the issue in case it’s a bug.

• Attach Tribler’s log file. On Windows, these are found in %APPDATA%. On Linux distributions, the log file is located in ~/.Tribler/. On OS X, the crash logs can be found in ~/Library/Logs/DiagnosticReports and logger output can be found in the syslog. The location of this log is /var/log/system.log. You can use the following command to extract Tribler-related lines from the syslog: syslog -C |grep -i tribler > ~/tribler.log. Please have a look at the content of the log files before posting it in case you want to edit out something.

5

https://jenkins.tribler.org/job/Publish_tribler_next/lastStableBuild/
https://jenkins.tribler.org/job/Publish_tribler_next/lastStableBuild/
https://github.com/Tribler/tribler/releases

Tribler Documentation, Release 6.6

– Does it still happen if you move %APPDATA\.Tribler away temporarily? (Do not delete it!)

– Do you have any other software installed that might interfere with Tribler?

Pull requests

When creating a new Pull request, please observe the following:

• Fixes go to next, features go to devel.

• Before starting to work on a feature or fix, check that nobody else is working on it by assigning yourself
the corresponding issue. Create one if it doesn’t exist. This is also useful to get feedback about if a given
feature would be accepted. If you are not a member of the project, just drop a comment saying that you
are working on that.

• Create one PR per feature/bugfix.

• Provide tests for any new features/fixes you implement and make sure they cover all methods and at least
the important branches in the new/updated code.

• If implementing a reasonably big or experimental feature, make it toggleable if possible (For instance for
a new community, new GUI stuff, etc.).

• Keep a clean and nice git history:

– Rebase instead of merging back from the base branch.

– Squash fixup commits together.

– Have nice and descriptive commit messages.

• Do not commit extraneous/auto-generated files.

• Use Unix style newlines for any new file created.

• No print statements if it’s not really justified (command line tools and such).

• Do an autopep8 pass before submitting the pull request.

• Do a pylint pass with the .pylintrc on the root of the repository and make sure you are not raising
the base branch violation count, it’s bad enough as it is :).

• For more PR etiquette have a look here.

6 Chapter 2. How to contribute to the Tribler project?

https://github.com/blog/1943-how-to-write-the-perfect-pull-request

CHAPTER 3

Branching model and development methodology

In this post we’ll explain the branching model and development metodology we use at TUDelft on the Tribler project.

This is mostly targeted at new students joining the team. However, it may give you some useful ideas if you are
working on a similar project type.

Branching model

Tribler is developed mainly by university students (mostly MSC and PHDs) that will work on Tribler for a relatively
short period of time. So pull requests usually require several review cycles and some of them take a long time to be
completed and merged (development of new features are usually part of Master thesis subjects or papers and suchlike).
This makes it rather hard to implement anything like traditional unsupervised continuous integration.

Our branching model is similar to the one described at length in Vincent Driessen’s post with some small differences.

Our main repository contains 3 branches:

• devel: The main development branch; all new features and fixes for them belong here. Every time a new release
cycle is started, the next branch gets replaced with a fork of devel.

• next: This is the stabilization branch where the next major release and subsequent maintenance releases will
be tagged from. Only bug fixes for released code are merged here. As you may have guessed there’s no bugfix
releases while a feature release is stabilized (simply due to lack of manpower on the project). All the changes
applied here here are regularly merged to devel.

• master: Contains the code of the latest stable release. It gets updated from next after every release.

Tags

Every revision that will result in a (pre)release gets tagged with a version number.

7

http://www.ewi.tudelft.nl/en/
https://github.com/Tribler/tribler
https://en.wikipedia.org/wiki/Continuous_integration
http://nvie.com/posts/a-successful-git-branching-model/

Tribler Documentation, Release 6.6

Setting up the local repo

1. Fork Tribler’s upstream repository.

2. Make a local clone of it:

git clone -o MrStudent --recursive --recurse-submodules --single-branch \
git@github.com:MrStudent/tribler

3. Add the upstream remote:

git remote add upstream https://github.com/Tribler/tribler

Note that an /HTTPS/ URL is used here instead of an /SSH/ one (git@github.com/yadayada). This is done in order
to prevent accidental pushes to the main repository. However, it will only work if you don’t set up /HTTPS/ auth for
github. Any attempt to push something there and git will ask you for credentials.

4. Profit!

Working on new features or fixes

1. Make sure there’s an issue for it and get it assigned to you. If there isn’t, create it yourself. Otherwise you risk
your changes not getting accepted upstream or wasting time on changes that are already being worked on by
other developers.

2. Create your feature or bugfix branch. New feature branches can be created like this:

git fetch --all && git checkout upstream/devel -b fix_2344_my_new_feature

For bug fixes:

git fetch --all && git checkout upstream/next -b fix_2344_my_new_bugfix

2344 would be the issue number this branch is dealing with. This makes it trivial to identify the purpose of a branch if
one hasn’t had been able to work on it for a while and can’t remember right away.

3. Create a Pull Request.

It is usually a good idea to create a pull request for a branch even if it’s a work in progress. Doing so will make our
Jenkins instance run all the checks, tests and experiments every time you push a change so you can have continuous
feedback on the state of your branch.

When creating a PR, always prepend the PR title with WIP until it’s ready for the final round of reviews. More about
this on the next section.

Notes:

• Always fork directly from upstream’s remote branches as opposed to your own (remote or local) devel or next
branches. Those are useless as they will quickly get out of date, so kill them with fire:

git branch -d next
git branch -d devel

• Once one of your branches has been merged upstream try to always delete them from your remote to avoid
cluttering other people’s remote listings (I’ve got around 15 remotes on my local Tribler repos and it can become
annoying to look for a particular branch among dozens and dozens of other people’s stale branches). This can be

8 Chapter 3. Branching model and development methodology

https://github.com/Tribler/tribler#fork-destination-box
mailto:git@github.com/yadayada
https://github.com/Tribler/tribler/compare
https://jenkins.tribler.org

Tribler Documentation, Release 6.6

done either from github’s PR web interface by clicking on the “delete branch” button after the merge has been
done or with:

git push MrStudent :fix_2344_my_new_bugfix

Getting your changes merged upstream

When you think your PR is complete you need to get at least one peer to review your proposed changes as many times
as necessary until it’s ready. If you can’t agree on something add another peer to the discussion to break the tie or talk
to the lead developer.

All updates during the review/fix iteration cycles should be made with fixup commits to make it easier for the re-
viewer(s) to spot the new changes that need review on each iteration. (read the --fixup argument on the git-commit
manpage if you don’t know what a fixup commit is).

Once the reviewer gives the OK and the tests and checks are passing, the fixup commits can then be squashed and the
WIP prefix can be switched to READY. The lead developer will then do the final review round.

As mentioned before, any requested modifications should come in the form of fixup commits to ease reviewing.

Once the final OK is given, all fixup commits should be squashed and the branch will get merged.

Misc guidelines

• Keep an eye on the PRs you’ve reviewed You will probably learn something from other reviewers and find
out what you missed out during yours.

• Don’t send PR from your remote’s ~devel~ branch Use proper names for your branches. It will be more
informative and they become part of the merge commit message.

• Keep it small The smaller the PRs are, the less review cycles will be needed and the quicker they will get
merged.

• Try to write as many tests as you can before writing any code It will help you think about the problem you
are trying to solve and it usually helps to write code that’s easier to test.

• Have the right amount of commits on your PRs Don’t have a feature implementation spread across a gazil-
lion commits. For instance if a given feature requires some refactoring, your history could look like this:

– “Refactor foo class to allow for bar” (At this point, the code should still work)

– “Tests for feature $X”

– “Implement feature $X”

• Write clean and self contained commits Each commit should make sense and be reviewable by itself. It
doesn’t make sense to break something on one commit and fix it on another later on in the same PR.
It also makes reviews much harder.

• Avoid unrelated and/or unnecessary modifications If you are fixing a bug or implementing a feature, avoid
unnecessary refactoring, white space changes, cosmetic code reordering, etc. It will introduce gratuitous
merge conflicts to your and others’ branches and make it harder to track changes (for instance with git
blame).

• Don’t rename a file and modify it on the same commit If you need to rename and modify a file on the same
PR, do so in two commits. This way git will always know what’s going on and it will be easier to track
changes across file renames.

3.5. Getting your changes merged upstream 9

Tribler Documentation, Release 6.6

• Don’t send pull requests with merge commits on them Always rebase or cherry pick. If a commit on devel
introduces merge conflicts in your branch, fix your commits by rebasing not by back merging and creating
a conflict resolution commit.

• If one of your commits fixes an issue, mention it Add a “Closes #1234” line to the comment’s body section
(from line 3 onwards). This way a reference to this particular commit will be created on the issue itself
and once the commit hits the target branch the issue will be closed automatically. If a whole PR is needed
to close a particular issue, add the “Closes” comment on the PR body.

• Capitalize the commit’s subject We are civilized people after all :D

• Write concise commit messages If a particular commit deserves a longer explanation, write a short commit
message, leave a blank line after it and then go all Shakespeare from the third line (message body) onwards.

• Read this Really, do it.

10 Chapter 3. Branching model and development methodology

http://chris.beams.io/posts/git-commit

CHAPTER 4

Setting up your development environment

This page contains instructions on how to setup your development environment to run Tribler from source.

Windows

This section contains information about setting up a Tribler development environment on Windows. Unlike Linux
based systems where installing third-party libraries is often a single apt-get command, installing and configuring
the necessary libraries requires more attention on Windows. Moreover, the Windows environment has different file
structures. For instance, where Linux is working extensively with .so (shared object) files, Windows uses DLL files.

Introduction

In this guide, all required dependencies of Tribler will be explained. It presents how to install these dependencies.
Some dependencies have to be built from source whereas other dependencies can be installed using a .msi installer.
The guide targets Windows 10, 64-bit systems, however, it is probably not very hard to install 32-bit packages.

First, Python 2.7 should be installed. If you already have a Python version installed, please check whether this version
is 64 bit before proceeding.

python -c "import struct;print(8 * struct.calcsize('P'))"

This outputs whether your current installation is 32 or 64 bit.

Python can be downloaded from the official Python website. You should download the Windows x86-64 MSI Installer
which is an executable. During the setup, remember to install pip/setuptools and to add Python to the PATH
variable to access Python from the command line. The option to add Python to the PATH variable is unchecked
by default! You can verify whether Python is installed correctly by typing python in the command line. Also check
whether pip is working by typing pip in the command line. If they are not working, check whether the PATH variables
are correctly set.

If you did not change the default installation location, Python should be located at C:\\Python27\\. The third-
party libraries are located in C:\\Python27\\Lib\\site-packages. If you forgot to add Python to your

11

https://www.python.org/downloads/release/python-2710/

Tribler Documentation, Release 6.6

PATH during the setup, you should need to add the C:\\Python27\\ and C:\\Python27\\Scripts directo-
ries to your PATH variable.

In order to compile some of the dependencies of Tribler, you will need Visual Studio 2015 which can be downloaded
from here. You should select the community edition. Visual Studio ships with a command line interface that can
be used for building some of the Python packages. Moreover, it provides a nice IDE which can be used to work on
Python projects. After installation of Visual Studio, you should install the Visual C++ tools. This can be done from
within Visual Studio by creating a new Visual C++ project. Visual Studio then gives an option to install the Visual
C++ developer tools.

In case importing one of the modules fail due to a DLL error, you can inspect if there are files missing by opening
it with Dependency Walker. It should show missing dependencies. In our case, we were missing MSVCR100.DLL
which belongs to the Microsoft Visual C++ 2010 SP1 Redistributable Package (x64). This package can be downloaded
from the Microsoft website. One other DLL that was missing was MSVCR110.DLL, which belongs to the Visual C++
Redistributable for Visual Studio 2012 Update 4. After installing these two packages, there should be no more import
errors.

M2Crypto

The first package to be installed is M2Crypto which can be installed using pip (the M2Crypto binary is precompiled):

pip install --egg M2CryptoWin64 # use M2CryptoWin32 for the 32-bit version of M2Crypto
python -c "import M2Crypto" # test whether M2Crypto can be successfully imported

If the second statement does not raise an error, M2Crypto is successfully installed.

PyQt5

If you wish to run the Tribler Graphical User Interface, PyQt5 should be available on the system. While PyQt5 is
available in the pip repository, this is only compatible with Python 3. Start by downloading the Qt library from here.
You can either compile it from source or use a Qt installer which automatically installs the pre-compiled libraries.

After the Qt installation is completed, PyQt5 should be compiled. This library depends on SIP, another library to
automatically generate Python bindings from C++ code. Download the latest SIP version here, extract it, navigate to
the directory where it has been extracted and compile/install it (don’t forget to execute these commands in the Visual
Studio command line):

python configure.py
nmake
nmake install

Next, download PyQt5 from here and make sure that you download the version that matches with the version of Qt
you installed in the previous steps. Extract the binary and compile it:

python configure.py
nmake
nmake install
python -c "import PyQt5" # this should work without any error

Note that the installation can take a while. After it has finished, the PyQt5 library is installed correctly.

pyWin32 Tools

In order to access some of the Windows API functions, pywin32 should be installed. The pywin32 installer can be
downloaded from Sourceforge and make sure to select the amd64 version and the version compatible with Python 2.7.

12 Chapter 4. Setting up your development environment

https://www.visualstudio.com/downloads/download-visual-studio-vs
https://www.microsoft.com/en-us/download/details.aspx?id=13523
https://www.microsoft.com/en-us/download/details.aspx?id=30679
https://www.microsoft.com/en-us/download/details.aspx?id=30679
http://doc.qt.io/qt-5/windows-support.html
https://www.riverbankcomputing.com/software/sip/download
https://sourceforge.net/projects/pyqt/files/PyQt5/
http://sourceforge.net/projects/pywin32/files/pywin32/

Tribler Documentation, Release 6.6

apsw The apsw (Another Python SQLite Wrapper) installer can be downloaded from GitHub. Again, make sure to
select the amd64 version that is compatible with Python 2.7. You can test whether it is installed correctly by running:

python -c "import apsw"

libtorrent

This package should be compiled from source. First, install Boost which can be downloaded from SourceForge. Make
sure to select the latest version and choose the version is compatible with your version of Visual C++ tools (probably
msvc-14).

After installation, you should set an environment variable to let libtorrent know where Boost can be found. You
can do this by going to Control Panel > System > Advanced > Environment Variables (more information about setting
environment variables can be found here). Now add a variable named BOOST_ROOT and with the value of your Boost
location. The default installation location for the Boost libraries is C:\\local\\boost_<BOOST VERSION>
where <BOOST VERSION> indicates the installed Boost version.

Next, you should build Boost.build. You can do this by opening the Visual Studio command prompt and navigating
to your Boost libraries. Navigate to tools\\build and execute bootstrap.bat. This will create the b2.exe
file. In order to invoke b2 from anywhere in your command line, you should add the Boost directory to your user
PATH environment variable. After modifying your PATH, you should reopen your command prompt.

Now, download the libtorrent source code from GitHub and extract it. It is advised to compile version 1.0.8. Note
that you if you have a 32-bit system, you can download the .msi installer so you do not have to compile libtorrent
yourself. Open the Developer Command Prompt shipped with Visual Studio (not the regular command prompt) and
navigate to the location where you extracted the libtorrent source. In the directory where the libtorrent source code
is located, navigate to bindings\\python and build libtorrent by executing the following command (this takes a
while so make sure to grab a coffee while waiting):

b2 boost=source libtorrent-link=static address-model=64

This command will build a static libtorrent 64-bit debug binary. You can also
build a release binary by appending release to the command given above. Af-
ter the build has been completed, the resulting libtorrent.pyd can be found in
LIBTORRENT_SOURCE\\bindings\\python\\bin\\msvc-14\\debug\\address-model-64\\boost-source\\link-static\\
where LIBTORRENT_SOURCE indicates the directory with the libtorrent source files. Copy libtorrent.pyd to
your site-packages location (the default location is C:\\Python27\\Lib\\site-packages) and test libtorrent
by executing:

python -c "import libtorrent"

libsodium

Libsodium can be download as precompiled binary from their website. Download the latest version, built with
msvc. Extract the archive to any location on your machine. Next, you should add the location of the dynamic li-
brary to your PATH variables (either as system variable or as user variable). These library files can be found in
LIBSODIUM_ROOT\\x64\\Release\\v140\\dynamic\\where LIBSODIUM_ROOT is the location of your
extracted libsodium files. After modifying your PATH, you should reopen your command prompt. You test whether
Python is able to load libsodium.dll by executing:

python -c "import ctypes; ctypes.cdll.LoadLibrary('libsodium')"

4.1. Windows 13

https://github.com/rogerbinns/apsw/releases
http://sourceforge.net/projects/boost/files/boost-binaries/
http://www.computerhope.com/issues/ch000549.htm
https://github.com/arvidn/libtorrent/releases
https://download.libsodium.org/libsodium/releases/

Tribler Documentation, Release 6.6

LevelDB

The next dependency to be installed is levelDB. LevelDB is a fast key-value storage written by Google. LevelDB itself
is written in C++ but there are several Python wrappers available. In this guide, you will compile leveldb from source.
First, download the source code from GitHub (either clone the repository or download the source code as zip). The
readme on this repo contains some basic instructions on how to compile leveldb.

Next, open the levedb_ext.sln file in Visual Studio. This guide is based on the x64 release configuration.
If you want to build a 32-bit leveldb project, change the configuration to win32 release.

You should edit the file paths of the include directories and the linker directories. These can be edited by right clicking
on the project and selecting properties. You will need to update additional include directories
(under C/C++ -> general) to point to your Python include directory (often located in C:\\Python27\\include).
This is needed for the compilation of the Python bindings. Also, make sure that the following preprocessor
definitions (found under C/C++ -> preprocessor) are defined: WIN32 and LEVELDB_PLATFORM_WINDOWS.

Next, additional library directories should be adjusted, found under Linker -> General. You should
add the directory where your Python libraries are residing, often in C:\\Python27\\libs.

Compile by pressing the build leveldb_ext in the build menu. If any errors are showing up during compilation,
please refer to the Visual Studio log file and check what’s going wrong. Often, this should be a missing include/linker
directory. If compilation is successful, a leveldb_ext.pyd file should have been created in the project directory.
Copy this file to your site-packages location and rename it to leveldb.pyd so Python is able to find it. You can test
whether your binary is working by using the following command which should execute without any errors:

python -c "import leveldb"

VLC

To install VLC, you can download the official installer from the VideoLAN website. Make sure to install the 64-bit
version of VLC.

Additional Packages

There are some additional packages which should be installed. They can easily be installed using pip:

pip install cherrypy chardet configobj cryptography decorator feedparser netifaces
→˓pillow twisted

Running Tribler

You should now be able to run Tribler from command line. Grab a copy of the Tribler source code and navigate in a
command line interface to the source code directory. Start Tribler by running:

python Tribler\Main\tribler.py

You might get errors about imports in the Tribler module. To fix this, you should add the location where the Tri-
bler directory is located to the PYTHONPATH user environment variables. Information about changing environment
variables can be found here.

If there are any problems with the guide above, please feel free to fix any errors or create an issue so we can look into
it.

14 Chapter 4. Setting up your development environment

https://github.com/happynear/py-leveldb-windows
http://www.videolan.org/vlc/download-windows.html
http://www.computerhope.com/issues/ch000549.htm
https://github.com/Tribler/tribler/issues/new

Tribler Documentation, Release 6.6

OS X

Tribler development environment setup on MacOS (10.10 to 10.12).

1. MacPorts

2. HomeBrew

3. Tribler

4. Notes

MacPorts

MacPorts Install instructions at macports.org. To install the Tribler dependencies using MacPorts, please run the
following command in your terminal:

sudo port -N install git ffmpeg qt5-qtcreator libtorrent-rasterbar gmp mpfr libmpc
→˓libsodium py27-m2crypto py27-apsw py27-Pillow py27-twisted py27-cherrypy3 py27-cffi
→˓py27-chardet py27-configobj py27-gmpy2 py27-pycparser py27-numpy py27-idna py27-
→˓leveldb py27-cryptography py27-decorator py27-feedparser py27-netifaces py27-
→˓service_identity py27-asn1-modules py27-pyinstaller py27-pyqt5 py27-sqlite py27-
→˓matplotlib

HomeBrew

Note

Skip to Tribler if you are using MacPorts because HomeBrew is a less complete alternative to MacPorts.

HomeBrew installation instructions can be found at brew.sh.

PyQt5

If you wish to run the Tribler Graphical User Interface, PyQt5 should be available on the system. While PyQt5 is
available in the pip repository, this is only compatible with Python 3. To install PyQt5, we first need to install Qt5, a
C++ library which can be installed with brew:

brew install qt5
brew cask install qt-creator # if you want the visual designer
qmake --version # test whether qt is installed correctly

After the installation completed, PyQt5 should be compiled. This library depends on SIP, another library to auto-
matically generate Python bindings from C++ code. Download the latest SIP version here, extract it, navigate to the
directory where it has been extracted and compile/install it:

python configure.py
make
sudo make install

Next, download PyQt5 from here and make sure that you download the version that matches with the version of Qt
you installed in the previous steps. Extract the binary and compile it:

4.2. OS X 15

https://www.macports.org
https://brew.sh
https://www.riverbankcomputing.com/software/sip/download
https://sourceforge.net/projects/pyqt/files/PyQt5/

Tribler Documentation, Release 6.6

python configure.py
make
sudo make install
python -c "import PyQt5" # this should work without any error

Note that the installation can take a while. After it has finished, the PyQt5 library is installed correctly.

M2Crypto

To install M2Crypto, Openssl has to be installed first. The shipped version of openssl by Apple gives errors when
compiling M2Crypto so a self-compiled version should be used. Start by downloading openssl 0.98 from here, extract
it and install it:

./config --prefix=/usr/local
make && make test
sudo make install
openssl version # this should be 0.98

Also Swig 3.0.4 is required for the compilation of the M2Crypto library. The easiest way to install it, it to download
Swig 3.0.4 from source here and compile it using:

./configure
make
sudo make install

Note: if you get an error about a missing PCRE library, install it with brew using brew install pcre.

Now we can install M2Crypto. First download the source (version 0.22.3 is confirmed to work on El Capitan and
Yosemite) and install it:

python setup.py build build_ext --openssl=/usr/local
sudo python setup.py install build_ext --openssl=/usr/local

Reopen your terminal window and test it out by executing:

python -c "import M2Crypto"

Apsw

Apsw can be installed by brew but this does not seem to work to compile the last version (the Clang compiler uses
the sqlite.h include shipped with Xcode which is outdated). Instead, the source should be downloaded from their
Github repository (make sure to download a release version) and compiled using:

sudo python setup.py fetch --all build --enable-all-extensions install test
python -c "import apsw" # verify whether apsw is successfully installed

Libtorrent

An essential dependency of Tribler is libtorrent. libtorrent is dependent on Boost, a set of C++ libraries. Boost can be
installed with the following command:

brew install boost
brew install boost-python

16 Chapter 4. Setting up your development environment

https://www.openssl.org/source/
http://www.swig.org/download.html
http://chandlerproject.org/Projects/MeTooCrypto
https://github.com/rogerbinns/apsw

Tribler Documentation, Release 6.6

Now we can install libtorrent:

brew install libtorrent-rasterbar --with-python

After the installation, we should add a pointer to the site-packages of Python so it can find the new libtorrent
library using the following command:

sudo echo 'import site; site.addsitedir("/usr/local/lib/python2.7/site-packages")' >>
→˓/Library/Python/2.7/site-packages/homebrew.pth

This command basically adds another location for the Python site-packages (the location where libtorrent-rasterbar
is installed). This command should be executed since the location where brew installs the Python packages is not in
sys.path. You can test whether libtorrent is correctly installed by executing:

python
>>> import libtorrent

Other Packages

There are a bunch of other packages that can easily be installed using pip and brew:

brew install homebrew/python/pillow gmp mpfr libmpc libsodium
sudo easy_install pip
pip install --user cherrypy cffi chardet configobj cryptography decorator feedparser
→˓gmpy2 idna leveldb netifaces numpy pillow pyasn1 pycparser twisted service_identity

If you encounter any error during the installation of Pillow, make sure that libjpeg and zlib are installed. They can be
installed using:

brew tap homebrew/dupes
brew install libjpeg zlib
brew link --force zlib

Tribler

git clone --recursive https://github.com/Tribler/tribler.git
cd tribler
cp /usr/local/lib/libsodium.dylib ./ || cp /opt/local/lib/libsodium.dylib ./
mkdir vlc
which ffmpeg | xargs -I {} cp "{}" vlc/

Proceed proceed to Build instructions

Notes

System Integrity Protection

The security system on MacOS can prevent libsodium.dylib from being dynamically linked into Tribler when
running Python. If this library cannot be loaded, it gives an error that libsodium could not be found. This is because
the DYLD_LIBRARY_PATH cannot be set when Python starts. More information about this can be read here.

The best solution to this problem is to link or copy libsodium.dylib into the Tribler root directory.

4.5. Tribler 17

https://forums.developer.apple.com/thread/13161

Tribler Documentation, Release 6.6

Help

If there are any problems with the guide above, please feel free to fix any errors or create an issue so we can look into
it.

Linux

This section contains information about setting up a Tribler development environment on Linux systems.

Debian/Ubuntu/Mint

First, install the required dependencies by executing the following command in your terminal:

sudo apt-get install libav-tools libsodium18 libx11-6 python-apsw python-cherrypy3
→˓python-crypto python-cryptography python-decorator python-feedparser python-leveldb
→˓python-libtorrent python-matplotlib python-m2crypto python-netifaces python-pil
→˓python-pyasn1 python-twisted python2.7 vlc python-chardet python-configobj python-
→˓pyqt5 python-pyqt5.qtsvg

Next, download the latest .deb file from here.

Installing libsodium13 and python-cryptography on Ubuntu 14.04

While installing libsodium13 and python-cryptography on a clean Ubuntu 14.04 install (possibly other versions as
well), the situation can occur where the Ubuntu terminal throws the following error when trying to install the depen-
dencies mentioned earlier in the README.rst:

E: Unable to locate package libsodium13 E: Unable to locate package python-cryptography

This means that the required packages are not directly in the available package list of Ubuntu 14.04.

To install the packages, the required files have to be downloaded from their respective websites.

For libsodium13, download libsodium13_1.0.1-1_<ProcessorType\>.deb from http://packages.
ubuntu.com/vivid/libsodium13{]}(http://packages.ubuntu.com/vivid/libsodium13

For python-cryptography, download python-cryptography_0.8-1ubuntu2_<ProcessorType\>.
deb from http://packages.ubuntu.com/vivid/python-cryptography.

Installing the files Through terminal

After downloading files go to the download folder and install the files through terminal:

For amd64:

cd ./Downloads
dpkg -i libsodium13_1.0.1-1_amd64.deb
dpkg -i python-cryptography_0.8-1ubuntu2_amd64.deb

For i386:

cd ./Downloads
dpkg -i libsodium13_1.0.1-1_i386.deb
dpkg -i python-cryptography_0.8-1ubuntu2_i386.deb

18 Chapter 4. Setting up your development environment

https://github.com/Tribler/tribler/issues/new
https://jenkins.tribler.org/job/Build-Tribler_Ubuntu-64_devel/lastStableBuild/
http://packages.ubuntu.com/vivid/libsodium13{]}(http://packages.ubuntu.com/vivid/libsodium13
http://packages.ubuntu.com/vivid/libsodium13{]}(http://packages.ubuntu.com/vivid/libsodium13
http://packages.ubuntu.com/vivid/python-cryptography

Tribler Documentation, Release 6.6

Through file navigator:

Using the file navigator to go to the download folder and by clicking on the .deb files to have the software installer
install the packages.

Now installing the list of dependencies should no longer throw an error.

If there are any problems with the guide above, please feel free to fix any errors or create an issue so we can look into
it.

Arch Linux

Execute the following command in your terminal:

pacman -S libsodium libtorrent-rasterbar python2-pyqt5 qt5-svg phonon-qt5-vlc python2-
→˓apsw python2-cherrypy python2-cryptography python2-decorator python2-feedparser
→˓python2-chardet python2-m2crypto python2-netifaces python2-plyvel python2-requests
→˓python2-twisted python2-configobj python2-matplotlib

4.7. Linux 19

https://github.com/Tribler/tribler/issues/new

Tribler Documentation, Release 6.6

20 Chapter 4. Setting up your development environment

CHAPTER 5

Building Tribler

This page contains instructions on how to build and package Tribler.

Windows

This section contains information about building Tribler on Windows. In the end you should be left with a .exe file
which, when opened, enables users to install Tribler on their system. This guide installs a 64-bit version of Tribler and
has been tested on Windows 10 and Windows 2008 Server R2, 64-bit. It is recommended to create this builder on a
system that is already able to run Tribler from a git checkout (it means that all the required packages required by Tribler
are installed already). In case you want to build a 32 bit version, just install all the dependencies mentioned in 32 bit
version. Information about setting up a developer environment on Windows can be found on tribler_dev_windows.

When you have installed zope, an empty __init__.py file must be present in the zope folder. If this file is
missing, a No module named zope error will be thrown. Create this file in the site-packages/zope
folder if it does not exist.

Required packages

To build a Tribler installer, you’ll need some additional scripts and packages. The versions used as of writing this
guide are mentioned next to the package or script. * The git command tools (version 2.7.0) are required to fetch the
latest release information. These can be downloaded from here. * PyInstaller, a tool to create an executable from
python files. Install the latest version from pip: pip install pyinstaller. * The builder needs to find all
packages that are required by Tribler so make sure you can run Tribler on your machine and that there are no missing
dependencies. * Nullsoft Scriptable Install System (NSIS) (version 2.5.0) is a script-driven Installer authoring tool
for Microsoft Windows with minimal overhead. It can be downloaded here. We selected version 2.5 as the uninstall
functions were not called properly in 3.03b. * Three plugins are required.The UAC plugin is the first. This can be
downloaded from here (version 0.2.4c). How to install a plugin can be found here. * The second plugin that is needed
is AccessControl plug-in (version 1.0.8.1). It can be downloaded here. * The third plugin required is NSIS Simple
Firewall Plugin (version 1.2.0). You can download it here. * The fourth plugin needed is NSProcess (Version 1.6.7),
which can be downloaded here. * A version of Microsoft Visual Studio should be installed (we use 2012), but make
sure you do not have the build-tools only. The full (community) edition can be downloaded here.

21

https://git-scm.com/download/win
http://nsis.sourceforge.net/Download
http://nsis.sourceforge.net/UAC_plug-in
http://nsis.sourceforge.net/How_can_I_install_a_plugin
http://nsis.sourceforge.net/AccessControl_plug-in
http://nsis.sourceforge.net/NSIS_Simple_Firewall_Plugin
http://nsis.sourceforge.net/NsProcess_plugin
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx

Tribler Documentation, Release 6.6

Building & Packaging Tribler

Start by cloning Tribler if you haven’t done already (using the git clone --recursive command). Next, create
a build folder directly on your C:\ drive. Inside the build folder, put the following items:

1. A folder certs containing a .pfx key. In our case it’s named swarmplayerprivatekey.pfx. Make
sure to rename paths in makedist_win.bat to match your file name.

2. The VLC 2.2.4 installer (either 32 or 64-bit). This file must be named vlc-2.2.4-win64.exe (or vlc-2.
2.4-win32.exe when building 32-bit).

3. vc_redist_90.exe (Microsoft Visual C++ 2008 Redistributable Package), which is available here. In case
you build 32 bit, get the x86 version here. Don’t forget to rename the file.

4. vc_redist_110.exe (Visual C++ Redistributable for Visual Studio 2012), which is available here. In case
you build 32 bit, get the x86 version. Once more, don’t forget to rename the file.

5. libsodium.dll which can be downloaded from libsodium.org (as of writing version 1.0.8).

6. The openssl dll files libeay32.dll, libssl32.dll and ssleay32.dll (place them in a directory
named openssl).

Then, set a PASSWORD environment variable with its value set to the password matching the one set in your .pfx
file.

Finally, open a command prompt and enter the following commands (Change 11.0 depending on your version of
Microsoft Visual Studio): Note that for building 32 bit you need to pass anything but 64, i.e. 32 or 86 to the
update_version_from_git.py script.

cd tribler
python Tribler/Main/Build/update_version_from_git.py 64
win\makedist_win.bat 64

This builds an .exe installer which installs Tribler.

OS X

This guide explains how to build Tribler on MacOS (10.10 to 10.12). The final result is a .dmg file which, when
opened, allows Tribler.app to be copied to the Applications directory and or launched. Make sure the required
packages required by Tribler are installed from the Development instructions.

Required packages

• vlc: PyInstaller automatically searches for the vlc library in the system and bundles it.

• eulagise: In order to attach the EULA to the .dmg file, we make use of the eulagise script. This script is
written in PERL and is based on a more fully-featured script. The script can be dowloaded from GitHub. The
builder expects the script to be executable and added to the PATH environment variable. This can be done with
the following commands:

cp eulagise.pl /usr/local/bin/eulagise
chmod +x /usr/local/bin/eulagise
eulagise # to test it - it should show that you should add some flags

22 Chapter 5. Building Tribler

https://www.microsoft.com/en-us/download/details.aspx?id=15336
https://www.microsoft.com/en-us/download/details.aspx?id=29
https://www.microsoft.com/en-us/download/details.aspx?id=30679
https://download.libsodium.org/libsodium/releases/
https://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-us/sysdm_advancd_environmnt_addchange_variable.mspx?mfr=true
https://github.com/CompoFX/compo/blob/master/tool/eulagise.pl

Tribler Documentation, Release 6.6

Building Tribler on macOS

Start by checking out the directory you want to clone (using git clone --recursive). Open a terminal and cd
to this new cloned directory (referenced to as tribler_source in this guide).

Next, we should inject version information into the files about the latest release. This is done by
the update_version_from_git.py script found in Tribler/Main/Build. Invoke it from the
tribler_source directory by executing:

Tribler/Main/Build/update_version_from_git.py

Now execute the builder with the following command:

./mac/makedistmac_64bit.sh

This will create the .dmg file in the tribler_source/dist directory.

Debian and derivatives

Run the following commands in your terminal:

sudo apt-get install devscripts python-setuptools
cd tribler
Tribler/Main/Build/update_version_from_git.py
debuild -i -us -uc -b

This will build the .deb file that can be used to install Tribler on other systems.

Other Unixes

We don’t have a generic setup.py yet.

So for the time being, the easiest way to package Tribler is to put Tribler/ in /usr/share/tribler/ and
debian/bin/tribler in /usr/bin/. A good reference for the dependency list is debian/control.

5.3. Debian and derivatives 23

Tribler Documentation, Release 6.6

24 Chapter 5. Building Tribler

CHAPTER 6

Tribler REST API

Overview

The Tribler REST API allows you to create your own applications with the channels, torrents and other data that
can be found in Tribler. Moreover, you can control Tribler and add data to Tribler using various endpoints. This
documentation explains the format and structure of the endpoints that can be found in this API. Note that this API is
currently under development and more endpoints will be added over time.

Making requests

The API has been built using Twisted Web. Requests go over HTTP where GET requests should be used when data
is fetched from the Tribler core and POST requests should be used if data in the core is manipulated (such as adding
a torrent or removing a download). Responses of the requests are in JSON format. Tribler should be running either
headless or with the GUI before you can use this API.

Some requests require one or more parameters. These parameters are passed using the JSON format. An example of
performing a request with parameters using the curl command line tool can be found below:

curl -X PUT http://localhost:8085/mychannel/rssfeeds/http%3A%2F%2Frssfeed.com%2Frss.
→˓xml

Error handling

If an unhandled exception occurs the response will have code HTTP 500 and look like this:

{
"error": {

"handled": False,
"code": "SomeException",
"message": "Human readable error message"

25

http://twistedmatrix.com/trac/wiki/TwistedWeb

Tribler Documentation, Release 6.6

}
}

If a valid request of a client caused a recoverable error the response will have code HTTP 500 and look like this:

{
"error": {

"handled": True,
"code": "DuplicateChannelNameError",
"message": "Channel name already exists: foo"

}
}

Download states

There are various download states possible which are returned when fetching downloads. These states are explained
in the table below.

DLSTA-
TUS_ALLOCATING_DISKSPACE

Libtorrent is allocating disk space for the download

DLSTA-
TUS_WAITING4HASHCHECK

The download is waiting for the hash check to be performed

DLSTA-
TUS_HASHCHECKING

Libtorrent is checking the hashes of the download

DLSTA-
TUS_DOWNLOADING

The torrent is being downloaded

DLSTATUS_SEEDING The torrent has been downloaded and is now being seeded to other peers
DLSTATUS_STOPPED The torrent has stopped downloading, either because the downloading has

completed or the user has stopped the download
DLSTA-
TUS_STOPPED_ON_ERROR

The torrent has stopped because an error occurred

DLSTATUS_METADATA The torrent information is being fetched from the DHT
DLSTATUS_CIRCUITS The (anonymous) download is building circuits

Endpoints

Discovered channels

class Tribler.Core.Modules.restapi.channels.channels_discovered_endpoint.ChannelsDiscoveredEndpoint(session)
This class is responsible for requests regarding the discovered channels.

render_GET(_)

GET /channels/discovered

A GET request to this endpoint returns all channels discovered in Tribler.

Example request:

curl -X GET http://localhost:8085/channels/discovered

Example response:

26 Chapter 6. Tribler REST API

Tribler Documentation, Release 6.6

{
"channels": [{

"id": 3,
"dispersy_cid": "da69aaad39ccf468aba2ab9177d5f8d8160135e6",
"name": "My fancy channel",
"description": "A description of this fancy channel",
"subscribed": False,
"votes": 23,
"torrents": 3,
"spam": 5,
"modified": 14598395,
"can_edit": True

}, ...]
}

render_PUT(request)

PUT /channels/discovered

Create your own new channel. The passed mode and descriptions are optional. Valid modes include:
‘open’, ‘semi-open’ or ‘closed’. By default, the mode of the new channel is ‘closed’.

Example request:

curl -X PUT http://localhost:8085/channels/discovered
--data "name=fancy name&description=fancy description&mode=open"

Example response:

{
"added": 23

}

statuscode 500 if a channel with the specified name already exists.

class Tribler.Core.Modules.restapi.channels.channels_discovered_endpoint.ChannelsDiscoveredSpecificEndpoint(session,
cid)

This class is responsible for dispatching requests to perform operations in a specific discovered channel.

render_GET(request)

GET /channels/discovered/(string: channelid)

Return the name, description and identifier of a channel.

Example request:

curl -X GET http://localhost:8085/channels/discovered/
→˓4a9cfc7ca9d15617765f4151dd9fae94c8f3ba11

Example response:

{
"overview": {

"name": "My Tribler channel",
"description": "A great collection of open-source movies",
"identifier": "4a9cfc7ca9d15617765f4151dd9fae94c8f3ba11"

6.5. Endpoints 27

Tribler Documentation, Release 6.6

}
}

statuscode 404 if your channel has not been created (yet).

Subscribed channels

class Tribler.Core.Modules.restapi.channels.channels_subscription_endpoint.ChannelsModifySubscriptionEndpoint(session,
cid)

This class is responsible for methods that modify the list of RSS feed URLs (adding/removing feeds).

render_DELETE(request)

DELETE /channels/subscribed/(string: channelid)

Unsubscribe from a specific channel. Returns error 404 if you are not subscribed to this channel.

Example request:

curl -X DELETE http://localhost:8085/channels/subscribed/
→˓da69aaad39ccf468aba2ab9177d5f8d8160135e6

Example response:

{
"unsubscribed" : True

}

statuscode 404 if you are not subscribed to the specified channel.

render_PUT(request)

PUT /channels/subscribed/(string: channelid)

Subscribe to a specific channel. Returns error 409 if you are already subscribed to this channel.

Example request:

curl -X PUT http://localhost:8085/channels/subscribed/
→˓da69aaad39ccf468aba2ab9177d5f8d8160135e6

Example response:

{
"subscribed" : True

}

statuscode 409 (conflict) if you are already subscribed to the specified channel.

class Tribler.Core.Modules.restapi.channels.channels_subscription_endpoint.ChannelsSubscribedEndpoint(session)
This class is responsible for requests regarding the subscriptions to channels.

render_GET(_)

GET /channels/subscribed

28 Chapter 6. Tribler REST API

Tribler Documentation, Release 6.6

Returns all the channels the user is subscribed to.

Example request:

curl -X GET http://localhost:8085/channels/subscribed

Example response:

{
"subscribed": [{

"id": 3,
"dispersy_cid": "da69aaad39ccf468aba2ab9177d5f8d8160135e6",
"name": "My fancy channel",
"description": "A description of this fancy channel",
"subscribed": True,
"votes": 23,
"torrents": 3,
"spam": 5,
"modified": 14598395,
"can_edit": True,

}, ...]
}

Popular channels

My channel

class Tribler.Core.Modules.restapi.channels.my_channel_endpoint.MyChannelEndpoint(session)
This class is responsible for managing requests regarding your channel.

render_GET(request)

GET /mychannel

Return the name, description and identifier of your channel. This endpoint returns a 404 HTTP response
if you have not created a channel (yet).

Example request:

curl -X GET http://localhost:8085/mychannel

Example response:

{
"overview": {

"name": "My Tribler channel",
"description": "A great collection of open-source movies",
"identifier": "4a9cfc7ca9d15617765f4151dd9fae94c8f3ba11"

}
}

statuscode 404 if your channel has not been created (yet).

render_POST(request)

POST /mychannel

6.5. Endpoints 29

Tribler Documentation, Release 6.6

Modify the name and/or the description of your channel. This endpoint returns a 404 HTTP response if
you have not created a channel (yet).

Example request:

curl -X POST http://localhost:8085/mychannel
--data "name=My fancy playlist&description=This playlist contains some
→˓random movies"

Example response:

{
"modified": True

}

statuscode 404 if your channel has not been created (yet).

RSS Feeds

class Tribler.Core.Modules.restapi.channels.channels_rss_endpoint.ChannelModifyRssFeedEndpoint(session,
cid,
feed_url)

This class is responsible for methods that modify the list of RSS feed URLs (adding/removing feeds).

render_DELETE(request)

DELETE /channels/discovered/(string: channelid)/rssfeeds/http%3A%2F%2Ftest.com%2Frss.xml

Delete a RSS feed from your channel. Returns error 404 if the RSS feed that is being removed does not
exist. Note that the rss feed url should be URL-encoded.

Example request:

curl -X DELETE http://localhost:8085/channels/discovered/abcd/rssfeeds/
→˓http%3A%2F%2Ftest.com%2Frss.xml

Example response:

{
"removed": True

}

statuscode 404 if the specified RSS URL is not in your feed list.

render_PUT(request)

PUT /channels/discovered/(string: channelid)/rssfeeds/http%3A%2F%2Ftest.com%2Frss.xml

Add a RSS feed to your channel. Returns error 409 if the supplied RSS feed already exists. Note that the
rss feed url should be URL-encoded.

Example request:

curl -X PUT http://localhost:8085/channels/discovered/abcd/rssfeeds/
→˓http%3A%2F%2Ftest.com%2Frss.xml

30 Chapter 6. Tribler REST API

Tribler Documentation, Release 6.6

Example response:

{
"added": True

}

statuscode 409 (conflict) if the specified RSS URL is already present in your feeds.

class Tribler.Core.Modules.restapi.channels.channels_rss_endpoint.ChannelsRecheckFeedsEndpoint(session,
cid)

This class is responsible for handling requests regarding refreshing rss feeds in your channel.

render_POST(request)

POST /channels/discovered/(string: channelid)/recheckfeeds

Rechecks all rss feeds in your channel. Returns error 404 if you channel does not exist.

Example request:

curl -X POST http://localhost:8085/channels/discovered/recheckrssfeeds

Example response:

{
"rechecked": True

}

statuscode 404 if you have not created a channel.

class Tribler.Core.Modules.restapi.channels.channels_rss_endpoint.ChannelsRssFeedsEndpoint(session,
cid)

This class is responsible for handling requests regarding rss feeds in a channel.

render_GET(request)

GET /channels/discovered/(string: channelid)/rssfeeds

Returns the RSS feeds in your channel.

curl -X GET http://localhost:8085/channels/discovered/abcd/rssfeeds

Example response:

{
"rssfeeds": [{

"url": "http://rssprovider.com/feed.xml",
}, ...]

}

Torrents

class Tribler.Core.Modules.restapi.channels.channels_torrents_endpoint.ChannelModifyTorrentEndpoint(session,
cid,
path)

This class is responsible for methods that modify the list of torrents (adding/removing torrents).

6.5. Endpoints 31

Tribler Documentation, Release 6.6

render_DELETE(request)

DELETE /channels/discovered/(string: channelid)/torrents/(string: torrent infohash)

Remove a torrent with a given infohash from a given channel.

Example request:

curl -X DELETE http://localhost:8085/channels/discovered/abcdefg/
→˓torrents/
97d2d8f5d37e56cfaeaae151d55f05b077074779

Example response:

{
"removed": True

}

statuscode 404 if the channel is not found or if the torrent is not found in the specified
channel

render_PUT(request)

PUT /channels/discovered/(string: channelid)/torrents/http%3A%2F%2Ftest.com%2Ftest.torrent

Add a torrent by magnet or url to your channel. Returns error 500 if something is wrong with the torrent
file and DuplicateTorrentFileError if already added to your channel (except with magnet links).

Example request:

curl -X PUT http://localhost:8085/channels/discovered/abcdefg/torrents/
http%3A%2F%2Ftest.com%2Ftest.torrent --data "description=nice video"

Example response:

{
"added": "http://test.com/test.torrent"

}

statuscode 404 if your channel does not exist.

statuscode 500 if the specified torrent is already in your channel.

class Tribler.Core.Modules.restapi.channels.channels_torrents_endpoint.ChannelsTorrentsEndpoint(session,
cid)

This class is responsible for managing requests regarding torrents in a channel.

render_GET(request)

GET /channels/discovered/(string: channelid)/torrents

A GET request to this endpoint returns all discovered torrents in a specific channel. The size of the torrent
is in number of bytes. The last_tracker_check value will be 0 if we did not check the tracker state of the
torrent yet. Optionally, we can disable the family filter for this particular request by passing the following
flag: - disable_filter: whether the family filter should be disabled for this request (1 = disabled)

Example request:

32 Chapter 6. Tribler REST API

Tribler Documentation, Release 6.6

curl -X GET http://localhost:8085/channels/discovered/
→˓da69aaad39ccf468aba2ab9177d5f8d8160135e6/torrents

Example response:

{
"torrents": [{

"id": 4,
"infohash": "97d2d8f5d37e56cfaeaae151d55f05b077074779",
"name": "Ubuntu-16.04-desktop-amd64",
"size": 8592385,
"category": "other",
"num_seeders": 42,
"num_leechers": 184,
"last_tracker_check": 1463176959

}, ...]
}

statuscode 404 if the specified channel cannot be found.

render_PUT(request)

PUT /channels/discovered/(string: channelid)/torrents

Add a torrent file to your own channel. Returns error 500 if something is wrong with the torrent file and
DuplicateTorrentFileError if already added to your channel. The torrent data is passed as base-64 encoded
string. The description is optional.

Example request:

curl -X PUT http://localhost:8085/channels/discovered/abcd/torrents
--data "torrent=...&description=funny video"

Example response:

{
"added": True

}

statuscode 404 if your channel does not exist.

statuscode 500 if the passed torrent data is corrupt.

Torrent info

class Tribler.Core.Modules.restapi.torrentinfo_endpoint.TorrentInfoEndpoint(session)
This endpoint is responsible for handing all requests regarding torrent info in Tribler.

render_GET(request)

GET /torrentinfo

A GET request to this endpoint will return information from a torrent found at a provided URI. This URI
can either represent a file location, a magnet link or a HTTP(S) url. - torrent: the URI of the torrent file
that should be downloaded. This parameter is required.

6.5. Endpoints 33

Tribler Documentation, Release 6.6

Example request:

curl -X PUT http://localhost:8085/torrentinfo?torrent=file:/home/
→˓me/test.torrent

Example response:

{"metainfo": <torrent metainfo dictionary>}

Playlists

class Tribler.Core.Modules.restapi.channels.channels_playlists_endpoint.ChannelsModifyPlaylistsEndpoint(session,
cid,
playlist_id)

This class is responsible for requests that are modifying a specific playlist in a channel.

render_DELETE(request)

DELETE /channels/discovered/(string: channelid)/playlists/(int: playlistid)

Remove a playlist with a specified playlist id.

Example request:

curl -X DELETE http://localhost:8085/channels/discovered/abcd/
→˓playlists/3

Example response:

{
"removed": True

}

statuscode 404 if the specified channel (community) or playlist does not exist

render_POST(request)

POST /channels/discovered/(string: channelid)/playlists/(int: playlistid)

Edit a specific playlist. The new name and description should be passed as parameter.

Example request:

curl -X POST http://localhost:8085/channels/discovered/abcd/playlists/3
--data "name=test&description=my test description"

Example response:

{
"modified": True

}

statuscode 404 if the specified channel (community) or playlist does not exist or if the

name and description parameters are missing.

34 Chapter 6. Tribler REST API

Tribler Documentation, Release 6.6

class Tribler.Core.Modules.restapi.channels.channels_playlists_endpoint.ChannelsPlaylistsEndpoint(session,
cid)

This class is responsible for handling requests regarding playlists in a channel.

render_GET(request)

GET /channels/discovered/(string: channelid)/playlists

Returns the playlists in your channel. Returns error 404 if you have not created a channel. - disable_filter:
whether the family filter should be disabled for this request (1 = disabled)

Example request:

curl -X GET http://localhost:8085/channels/discovered/abcd/playlists

Example response:

{
"playlists": [{

"id": 1,
"name": "My first playlist",
"description": "Funny movies",
"torrents": [{

"id": 4,
"infohash": "97d2d8f5d37e56cfaeaae151d55f05b077074779",
"name": "Ubuntu-16.04-desktop-amd64",
"size": 8592385,
"category": "other",
"num_seeders": 42,
"num_leechers": 184,
"last_tracker_check": 1463176959

}, ...]
}, ...]

}

statuscode 404 if you have not created a channel.

render_PUT(request)

PUT /channels/discovered/(string: channelid)/playlists

Create a new empty playlist with a given name and description. The name and description parameters are
mandatory.

Example request:

curl -X PUT http://localhost:8085/channels/discovered/abcd/playlists
--data "name=My fancy playlist&description=This playlist contains some
→˓random movies"

Example response:

{
"created": True

}

statuscode 400 if you are missing the name and/or description parameter

6.5. Endpoints 35

Tribler Documentation, Release 6.6

statuscode 404 if the specified channel does not exist

Downloads

class Tribler.Core.Modules.restapi.downloads_endpoint.DownloadExportTorrentEndpoint(session,
in-
fo-
hash)

This class is responsible for requests that are exporting a download to a .torrent file.

render_GET(request)

GET /download/(string: infohash)/torrent

A GET request to this endpoint returns the .torrent file associated with the specified download.

Example request:

curl -X GET http://localhost:8085/downloads/
→˓4344503b7e797ebf31582327a5baae35b11bda01/torrent

Example response:

The contents of the .torrent file.

class Tribler.Core.Modules.restapi.downloads_endpoint.DownloadsEndpoint(session)
This endpoint is responsible for all requests regarding downloads. Examples include getting all downloads,
starting, pausing and stopping downloads.

render_GET(request)

GET /downloads?get_peers=(boolean: get_peers)&get_pieces=(boolean: get_pieces)

A GET request to this endpoint returns all downloads in Tribler, both active and inactive. The progress is
a number ranging from 0 to 1, indicating the progress of the specific state (downloading, checking etc).
The download speeds have the unit bytes/sec. The size of the torrent is given in bytes. The estimated time
assumed is given in seconds. A description of the possible download statuses can be found in the REST
API documentation.

Detailed information about peers and pieces is only requested when the get_peers and/or get_pieces flag is
set. Note that setting this flag has a negative impact on performance and should only be used in situations
where this data is required.

Example request:

curl -X GET http://localhost:8085/downloads?get_peers=1&get_pieces=1

Example response:

{
"downloads": [{

"name": "Ubuntu-16.04-desktop-amd64",
"progress": 0.31459265,
"infohash": "4344503b7e797ebf31582327a5baae35b11bda01",
"speed_down": 4938.83,
"speed_up": 321.84,
"status": "DLSTATUS_DOWNLOADING",
"size": 89432483,

36 Chapter 6. Tribler REST API

Tribler Documentation, Release 6.6

"eta": 38493,
"num_peers": 53,
"num_seeds": 93,
"total_up": 10000,
"total_down": 100000,
"ratio": 0.1,
"files": [{

"index": 0,
"name": "ubuntu.iso",
"size": 89432483,
"included": True

}, ...],
"trackers": [{

"url": "http://ipv6.torrent.ubuntu.com:6969/announce",
"status": "Working",
"peers": 42

}, ...],
"hops": 1,
"anon_download": True,
"safe_seeding": True,
"max_upload_speed": 0,
"max_download_speed": 0,
"destination": "/home/user/file.txt",
"availability": 1.234,
"peers": [{

"ip": "123.456.789.987",
"dtotal": 23,
"downrate": 0,
"uinterested": False,
"wstate": "\",
"optimistic": False,
...

}, ...],
"total_pieces": 420,
"vod_mod": True,
"vod_prebuffering_progress": 0.89,
"vod_prebuffering_progress_consec": 0.86,
"error": "",
"time_added": 1484819242,

}
}, ...]

render_PUT(request)

PUT /downloads

A PUT request to this endpoint will start a download from a provided URI. This URI can either represent
a file location, a magnet link or a HTTP(S) url. - anon_hops: the number of hops for the anonymous
download. 0 hops is equivalent to a plain download - safe_seeding: whether the seeding of the download
should be anonymous or not (0 = off, 1 = on) - destination: the download destination path of the torrent -
torrent: the URI of the torrent file that should be downloaded. This parameter is required.

Example request:

curl -X PUT http://localhost:8085/downloads
--data "anon_hops=2&safe_seeding=1&destination=/my/dest/on/disk/&
→˓uri=file:/home/me/test.torrent

6.5. Endpoints 37

Tribler Documentation, Release 6.6

Example response:

{"started": True, "infohash":
→˓"4344503b7e797ebf31582327a5baae35b11bda01"}

Search

class Tribler.Core.Modules.restapi.search_endpoint.SearchCompletionsEndpoint(session)
This class is responsible for managing requests regarding the search completions terms of a query.

render_GET(request)

GET /search/completions?q=(string: query)

A GET request to this endpoint will return autocompletion suggestions for the given query. For instance,
when searching for “pioneer”, this endpoint might return “pioneer one” if that torrent is present in the local
database. This endpoint can be used to suggest terms to users while they type their search query.

Example request:

curl -X GET http://localhost:8085/search/completions?q=pioneer

Example response:

{
"completions": ["pioneer one", "pioneer movie"]

}

class Tribler.Core.Modules.restapi.search_endpoint.SearchEndpoint(session)
This endpoint is responsible for searching in channels and torrents present in the local Tribler database. It also
fires a remote search in the Dispersy communities.

render_GET(request)

GET /search?q=(string: query)

A GET request to this endpoint will create a search. Results are returned over the events endpoint, one by
one. First, the results available in the local database will be pushed. After that, incoming Dispersy results
are pushed. The query to this endpoint is passed using the url, i.e. /search?q=pioneer.

Example request:

curl -X GET http://localhost:8085/search?q=tribler

Example response:

{
"type": "search_result_channel",
"query": "test",
"result": {

"id": 3,
"dispersy_cid": "da69aaad39ccf468aba2ab9177d5f8d8160135e6",
"name": "My fancy channel",
"description": "A description of this fancy channel",
"subscribed": True,
"votes": 23,
"torrents": 3,

38 Chapter 6. Tribler REST API

Tribler Documentation, Release 6.6

"spam": 5,
"modified": 14598395,
"can_edit": False

}
}

State info

class Tribler.Core.Modules.restapi.state_endpoint.StateEndpoint(session)
This endpoint is responsible for handing all requests regarding the state of Tribler.

render_GET(request)

GET /state

A GET request to this endpoint returns the current state of the Tribler core. There are three states: -
STARTING: The core of Tribler is starting - UPGRADING: The upgrader is active - STARTED: The
Tribler core has started

Example request:

curl -X GET http://localhost:8085/state

Example response:

{
"state": "STARTED",
"last_exception": None

}

Variables

class Tribler.Core.Modules.restapi.variables_endpoint.VariablesEndpoint(session)
This endpoint is responsible for handing all requests regarding runtime-defined variables in Tribler such as ports.

render_GET(request)

GET /variables

A GET request to this endpoint returns all the runtime-defined variables in Tribler.

Example request:

curl -X GET http://localhost:8085/variables

Example response:

{
"variables": {

"ports": {
"video~port": 1234,
"tunnel_community~socks5_listen_ports~1": 1235,
...

},

6.5. Endpoints 39

Tribler Documentation, Release 6.6

...
}

}

Settings

class Tribler.Core.Modules.restapi.settings_endpoint.SettingsEndpoint(session)
This endpoint is reponsible for handing all requests regarding settings and configuration.

parse_setting(section, option, value)
Set a specific Tribler setting. Throw a ValueError if this setting is not available.

parse_settings_dict(settings_dict, depth=1, root_key=None)
Parse the settings dictionary. Throws an error if the options dictionary seems to be invalid (i.e. there are
keys not available in the configuration or the depth of the dictionary is too high.

render_GET(request)

GET /settings

A GET request to this endpoint returns all the session settings that can be found in Tribler. Please note that
a port with a value of -1 means that the port is randomly assigned at startup.

Example request:

curl -X GET http://localhost:8085/settings

Example response:

{
"settings": {

"libtorrent": {
"anon_listen_port": -1,
...

},
...

}
}

render_POST(request)

POST /settings

A POST request to this endpoint will update Tribler settings. A JSON-dictionary should be passed as body
contents.

Example request:

curl -X POST http://localhost:8085/settings --data "{"

Example response:

{
"modified": True

}

40 Chapter 6. Tribler REST API

Tribler Documentation, Release 6.6

Events

class Tribler.Core.Modules.restapi.events_endpoint.EventsEndpoint(session)

Important events in Tribler are returned over the events endpoint. This connection is held open. Each
event is pushed over this endpoint in the form of a JSON dictionary. Each JSON dictionary contains
a type field that indicates the type of the event. Individual events are separated by a newline character
(

).

Currently, the following events are implemented:

•events_start: An indication that the event socket is opened and that the server is ready to push
events. This includes information about whether Tribler has started already or not and the version
of Tribler used.

•search_result_channel: This event dictionary contains a search result with a channel that has
been found.

•search_result_torrent: This event dictionary contains a search result with a torrent that has been
found.

•upgrader_started: An indication that the Tribler upgrader has started.

•upgrader_finished: An indication that the Tribler upgrader has finished.

•upgrader_tick: An indication that the state of the upgrader has changed. The dictionary contains
a human-readable string with the new state.

•watch_folder_corrupt_torrent: This event is emitted when a corrupt .torrent file in the watch
folder is found. The dictionary contains the name of the corrupt torrent file.

•new_version_available: This event is emitted when a new version of Tribler is available.

•tribler_started: An indicator that Tribler has completed the startup procedure and is ready to use.

•channel_discovered: An indicator that Tribler has discovered a new channel. The event contains
the name, description and dispersy community id of the discovered channel.

•torrent_discovered: An indicator that Tribler has discovered a new torrent. The event contains
the infohash, name, list of trackers, list of files with name and size, and the dispersy community
id of the discovered torrent.

•torrent_removed_from_channel: An indicator that a torrent has been removed from a channel.
The event contains the infohash and the dispersy id of the channel which contained the removed
torrent.

•torrent_finished: A specific torrent has finished downloading. The event includes the infohash
and name of the torrent that has finished downloading.

•torrent_error: An error has occurred during the download process of a specific torrent. The event
includes the infohash and a readable string of the error message.

•tribler_exception: An exception has occurred in Tribler. The event includes a readable string of
the error.

•market_ask: Tribler learned about a new ask in the market. The event includes information about
the ask.

•market_bid: Tribler learned about a new bid in the market. The event includes information about
the bid.

•market_ask_timeout: An ask has expired. The event includes information about the ask.

6.5. Endpoints 41

Tribler Documentation, Release 6.6

•market_bid_timeout: An bid has expired. The event includes information about the bid.

•market_transaction_complete: A transaction has been completed in the market. The event con-
tains the transaction that was completed.

•market_payment_received: We received a payment in the market. The events contains the pay-
ment information.

•market_payment_sent: We sent a payment in the market. The events contains the payment
information.

•market_iom_input_required: The Internet-of-Money modules requires user input (like a pass-
word or challenge response).

render_GET(request)

GET /events

A GET request to this endpoint will open the event connection.

Example request:

curl -X GET http://localhost:8085/events

Wallets

class Tribler.Core.Modules.restapi.wallets_endpoint.WalletBalanceEndpoint(session,
iden-
ti-
fier)

This class handles requests regarding the balance in a wallet.

render_GET(request)

GET /wallets/(string:wallet identifier)/balance

A GET request to this endpoint will return balance information of a specific wallet.

Example request:

curl -X GET http://localhost:8085/wallets/BTC/balance

Example response:

{
"balance": {

"available": 0.000126,
"pending": 0.0,
"currency": "BTC"

}
}

class Tribler.Core.Modules.restapi.wallets_endpoint.WalletEndpoint(session, iden-
tifier)

This class represents the endpoint for a single wallet.

render_PUT(request)

42 Chapter 6. Tribler REST API

Tribler Documentation, Release 6.6

PUT /wallets/(string:wallet identifier)

A request to this endpoint will create a new wallet.

Example request:

curl -X PUT http://localhost:8085/wallets/BTC --data "password=secret"

Example response:

{
"created": True

}

class Tribler.Core.Modules.restapi.wallets_endpoint.WalletTransactionsEndpoint(session,
iden-
ti-
fier)

This class handles requests regarding the transactions of a wallet.

render_GET(request)

GET /wallets/(string:wallet identifier)/transactions

A GET request to this endpoint will return past transactions of a specific wallet.

Example request:

curl -X GET http://localhost:8085/wallets/BTC/transactions

Example response:

{
"transactions": [{

"currency": "BTC",
"to": "17AVS7n3zgBjPq1JT4uVmEXdcX3vgB2wAh",
"outgoing": false,
"from": "",
"description": "",
"timestamp": "1489673696",
"fee_amount": 0.0,
"amount": 0.00395598,
"id":

→˓"6f6c40d034d69c5113ad8cb3710c172955f84787b9313ede1c39cac85eeaaffe"
}, ...]

}

class Tribler.Core.Modules.restapi.wallets_endpoint.WalletsEndpoint(session)
This class represents the root endpoint of the wallets resource.

render_GET(request)

GET /wallets

A GET request to this endpoint will return information about all available wallets in Tribler. This includes
information about the address, a human-readable wallet name and the balance.

Example request:

6.5. Endpoints 43

Tribler Documentation, Release 6.6

curl -X GET http://localhost:8085/wallets

Example response:

{
"wallets": [{

"created": True,
"name": "Bitcoin",
"address": "17AVS7n3zgBjPq1JT4uVmEXdcX3vgB2wAh",
"balance": {

"available": 0.000126,
"pending": 0.0,
"currency": "BTC"

}
}, ...]

}

Market

class Tribler.Core.Modules.restapi.market.asks_bids_endpoint.AsksEndpoint(session)
This class handles requests regarding asks in the market community.

render_GET(request)

GET /market/asks

A GET request to this endpoint will return all ask ticks in the order book of the market community.

Example request:

curl -X GET http://localhost:8085/market/asks

Example response:

{
"asks": [{

"price_type": "BTC",
"quantity_type": "MC",
"ticks": [{

"trader_id": "12c406358ba05e5883a75da3f009477e4ca699a9",
"timeout": 3600,
"quantity_type": "MC",
"price_type": "BTC",
"timestamp": 1493905920.68573,
"price": 10.0,
"order_number": 1,
"message_id": "12c406358ba05e5883a75da3f009477e4ca699a9.1",
"quantity": 10.0}, ...]

}, ...]
}

render_PUT(request)

PUT /market/asks

A request to this endpoint will create a new ask order.

44 Chapter 6. Tribler REST API

Tribler Documentation, Release 6.6

Example request:

curl -X PUT http://localhost:8085/market/asks --data
"price=10&quantity=10&price_type=BTC&quantity_type=MC"

Example response:

{
"created": True

}

class Tribler.Core.Modules.restapi.market.asks_bids_endpoint.BaseAsksBidsEndpoint(session)
This class acts as the base class for the asks/bids endpoint.

create_ask_bid_from_params(parameters)
Create an ask/bid from the provided parameters in a request. This method returns a tuple with the price,
quantity and timeout of the ask/bid.

class Tribler.Core.Modules.restapi.market.asks_bids_endpoint.BidsEndpoint(session)
This class handles requests regarding bids in the market community.

render_GET(request)

GET /market/bids

A GET request to this endpoint will return all bid ticks in the order book of the market community.

Example request:

curl -X GET http://localhost:8085/market/bids

Example response:

{
"bids": [{

"price_type": "BTC",
"quantity_type": "MC",
"ticks": [{

"trader_id": "12c406358ba05e5883a75da3f009477e4ca699a9",
"timeout": 3600,
"quantity_type": "MC",
"price_type": "BTC",
"timestamp": 1493905920.68573,
"price": 10.0,
"order_number": 1,
"message_id": "12c406358ba05e5883a75da3f009477e4ca699a9.1",
"quantity": 10.0}, ...]

}, ...]
}

render_PUT(request)

PUT /market/bids

A request to this endpoint will create a new bid order.

Example request:

6.5. Endpoints 45

Tribler Documentation, Release 6.6

curl -X PUT http://localhost:8085/market/bids --data
"price=10&quantity=10&price_type=BTC&quantity_type=MC"

Example response:

{
"created": True

}

class Tribler.Core.Modules.restapi.market.orders_endpoint.OrdersEndpoint(session)
This class handles requests regarding your orders in the market community.

render_GET(request)

GET /market/orders

A GET request to this endpoint will return all your orders in the market community.

Example request:

curl -X GET http://localhost:8085/market/orders

Example response:

{
"orders": [{

"trader_id": "12c406358ba05e5883a75da3f009477e4ca699a9",
"timestamp": 1493906434.627721,
"price": 10.0,
"quantity_type": "MC",
"reserved_quantity": 0.0,
"is_ask": False,
"price_type": "BTC",
"timeout": 3600.0,
"traded_quantity": 0.0,
"order_number": 1,
"completed_timestamp": null,
"quantity": 10.0

}]
}

class Tribler.Core.Modules.restapi.market.transactions_endpoint.TransactionsEndpoint(session)
This class handles requests regarding (past) transactions in the market community.

render_GET(request)

GET /market/transactions

A GET request to this endpoint will return all performed transactions in the market community.

Example request:

curl -X GET http://localhost:8085/market/transactions

Example response:

{
"transactions": [{

46 Chapter 6. Tribler REST API

Tribler Documentation, Release 6.6

"trader_id": "12c406358ba05e5883a75da3f009477e4ca699a9",
"order_number": 4,
"partner_trader_id": "34c406358ba05e5883a75da3f009477e4ca699a9

→˓",
"transaction_number": 3,
"price": 10,
"price_type": "MC",
"transferred_price": 5,
"quantity": 10,
"quantity_type": "BTC",
"transferred_quantity": 4,
"timestamp": 1493906434.627721,
"payment_complete": False

]
}

Debug

Statistics

class Tribler.Core.Modules.restapi.statistics_endpoint.StatisticsCommunitiesEndpoint(session)
This class handles requests regarding Dispersy communities statistics.

render_GET(request)

GET /statistics/communities

A GET request to this endpoint returns general statistics of active Dispersy communities.

Example request:

curl -X GET http://localhost:8085/statistics/communities

Example response:

{
"community_statistics": [{

"identifier": "48d04e922dec4430daf22400c9d4cc5a3a53b27d",
"member": "a66ebac9d88a239ef348a030d5ed3837868fc06d",
"candidates": 43,
"global_time": 42,
"classification", "ChannelCommunity",
"packets_sent": 43,
"packets_received": 89,
...

}, { ... }]
}

class Tribler.Core.Modules.restapi.statistics_endpoint.StatisticsDispersyEndpoint(session)
This class handles requests regarding Dispersy statistics.

render_GET(request)

GET /statistics/dispersy

6.5. Endpoints 47

Tribler Documentation, Release 6.6

A GET request to this endpoint returns general statistics in Dispersy. The returned runtime is the amount
of seconds that Dispersy is active. The total uploaded and total downloaded statistics are in bytes.

Example request:

curl -X GET http://localhost:8085/statistics/dispersy

Example response:

{
"dispersy_statistics": {

"wan_address": "123.321.456.654:1234",
"lan_address": "192.168.1.2:1435",
"connection": "unknown",
"runtime": 859.34,
"total_downloaded": 538.53,
"total_uploaded": 983.24,
"packets_sent": 43,
"packets_received": 89,
...

}
}

class Tribler.Core.Modules.restapi.statistics_endpoint.StatisticsEndpoint(session)
This endpoint is responsible for handing requests regarding statistics in Tribler.

class Tribler.Core.Modules.restapi.statistics_endpoint.StatisticsTriblerEndpoint(session)
This class handles requests regarding Tribler statistics.

render_GET(request)

GET /statistics/tribler

A GET request to this endpoint returns general statistics in Tribler. The size of the Tribler database is in
bytes.

Example request:

curl -X GET http://localhost:8085/statistics/tribler

Example response:

{
"tribler_statistics": {

"num_channels": 1234,
"database_size": 384923,
"torrent_queue_stats": [{

"failed": 2,
"total": 9,
"type": "TFTP",
"pending": 1,
"success": 6

}, ...]
}

}

48 Chapter 6. Tribler REST API

CHAPTER 7

Twisted in Tribler

Once you have a basic understanding of Python, you will need to understand two more advanced concepts before you
can start working on Tribler: generator functions and scheduling in Twisted. This document will teach you about both
in the context of Tribler.

Generator functions

When browsing the Tribler source code you will find a lot of yield statements. This makes this function a generator
and as a result you will not find any return statements in this function (which would be syntactically invalid). The
special thing about these generators is that they can return intermittent values, without releasing their local context.
This is an advantage when the caller of this generator does not necessarily need all of the outputs the generator could
produce. Instead, the caller can decide to stop iterating over the outputs of the generator at any given time.

Take for example an identifier generator:

def get_id():
i = 0
while True:

yield i
i = i + 1

One could then call this get_id() function as follows:

print get_id().next()

Yielding Deferreds

Now that you know about generators we can discuss Twisted’s Deferred objects. Essentially, the only thing a
Deferred does, is call a specified callback function if Deferred.callback() has been called. For more infor-
mation you can reference the official documentation at https://twistedmatrix.com/documents/16.5.0/core/howto/defer.
html.

49

https://twistedmatrix.com/documents/16.5.0/core/howto/defer.html
https://twistedmatrix.com/documents/16.5.0/core/howto/defer.html

Tribler Documentation, Release 6.6

To show how these Deferreds can be used in conjunction with generators, we will give an example. In Tribler you will
find a lot of the following types of code:

@inlineCallbacks
def some_function():

Wait for some_deferred_object to be called
yield some_deferred_object
The some_deferred_object event has happened now

This block of code does two things.

1. [yield some_deferred_object] Yield a Deferred object

2. [@inlineCallbacks] Call all values of the generator, call the next() value of this generator every time
the previously yielded Deferred has been fired.

Practically speaking, this pauses the control flow through this function until the some_deferred_object has
been called. This is useful when dealing with asynchronous events, which otherwise might not be guaranteed to have
happened at a certain point in time. What makes the Deferred structure even more useful, is that it will return with
a value once it has been called. This means that we can use the return value of the yield within our generator function.
In our example:

@inlineCallbacks
def some_function():

Wait for some_deferred_object to produce a value
value = yield some_deferred_object
Now we can continue our control flow
print value

Caveats

Return values - As previously mentioned, Python generators do not allow return values. To do this in a Deferred
generator, one can use the returnValue() function. In our example:

@inlineCallbacks
def some_function():

value = yield some_deferred_object
returnValue(value)

The main thread - Python has some issues when it comes to function reentrancy. To this end you might have to tell
the Twisted framework that it cannot schedule other functions in between yields of your generator. Like so:

@blocking_call_on_reactor_thread
@inlineCallbacks
def some_function():

yield some_deferred_object
No other function can be called on this thread while the yield is waiting

Do note that your some_deferred_object cannot be called from the main thread now! Some other thread will
have to wake the Deferred for the function to continue execution.

Further reading

Functional programming in Python: https://docs.python.org/2.7/howto/functional.html

50 Chapter 7. Twisted in Tribler

https://docs.python.org/2.7/howto/functional.html

Tribler Documentation, Release 6.6

Deferred reference: https://twistedmatrix.com/documents/16.5.0/core/howto/defer.html
Threading in Twisted: http://twistedmatrix.com/documents/current/core/howto/threading.html

7.4. Further reading 51

https://twistedmatrix.com/documents/16.5.0/core/howto/defer.html
http://twistedmatrix.com/documents/current/core/howto/threading.html

Tribler Documentation, Release 6.6

52 Chapter 7. Twisted in Tribler

CHAPTER 8

Indices and tables

• genindex

• modindex

• search

53

Tribler Documentation, Release 6.6

54 Chapter 8. Indices and tables

HTTP Routing Table

/channels
GET /channels/discovered, 26
GET /channels/discovered/(string:

channelid), 27
GET /channels/discovered/(string:

channelid)/playlists, 35
GET /channels/discovered/(string:

channelid)/rssfeeds, 31
GET /channels/discovered/(string:

channelid)/torrents, 32
GET /channels/subscribed, 28
POST /channels/discovered/(string:

channelid)/playlists/(int:
playlistid), 34

POST /channels/discovered/(string:
channelid)/recheckfeeds, 31

PUT /channels/discovered, 27
PUT /channels/discovered/(string:

channelid)/playlists, 35
PUT /channels/discovered/(string:

channelid)/rssfeeds/http%3A%2F%2Ftest.com%2Frss.xml,
30

PUT /channels/discovered/(string:
channelid)/torrents, 33

PUT /channels/discovered/(string:
channelid)/torrents/http%3A%2F%2Ftest.com%2Ftest.torrent,
32

PUT /channels/subscribed/(string:
channelid), 28

DELETE /channels/discovered/(string:
channelid)/playlists/(int:
playlistid), 34

DELETE /channels/discovered/(string:
channelid)/rssfeeds/http%3A%2F%2Ftest.com%2Frss.xml,
30

DELETE /channels/discovered/(string:
channelid)/torrents/(string:
torrent infohash), 32

DELETE /channels/subscribed/(string:

channelid), 28

/download
GET /download/(string:

infohash)/torrent, 36

/downloads
PUT /downloads, 37

/downloads?get_peers=(boolean:
get_peers)&get_pieces=(boolean:
get_pieces)
GET /downloads?get_peers=(boolean:

get_peers)&get_pieces=(boolean:
get_pieces), 36

/events
GET /events, 42

/market
GET /market/asks, 44
GET /market/bids, 45
GET /market/orders, 46
GET /market/transactions, 46
PUT /market/asks, 44
PUT /market/bids, 45

/mychannel
GET /mychannel, 29
POST /mychannel, 29

/search
GET /search/completions?q=(string:query),

38

/search?q=(string:query)
GET /search?q=(string:query), 38

55

Tribler Documentation, Release 6.6

/settings
GET /settings, 40
POST /settings, 40

/state
GET /state, 39

/statistics
GET /statistics/communities, 47
GET /statistics/dispersy, 47
GET /statistics/tribler, 48

/torrentinfo
GET /torrentinfo, 33

/variables
GET /variables, 39

/wallets
GET /wallets, 43
GET /wallets/(string:wallet

identifier)/balance, 42
GET /wallets/(string:wallet

identifier)/transactions, 43
PUT /wallets/(string:wallet

identifier), 42

56 HTTP Routing Table

Python Module Index

t
Tribler.Core.Modules.restapi.channels.channels_discovered_endpoint,

26
Tribler.Core.Modules.restapi.channels.channels_playlists_endpoint,

34
Tribler.Core.Modules.restapi.channels.channels_popular_endpoint,

29
Tribler.Core.Modules.restapi.channels.channels_rss_endpoint,

30
Tribler.Core.Modules.restapi.channels.channels_subscription_endpoint,

28
Tribler.Core.Modules.restapi.channels.channels_torrents_endpoint,

31
Tribler.Core.Modules.restapi.channels.my_channel_endpoint,

29
Tribler.Core.Modules.restapi.downloads_endpoint,

36
Tribler.Core.Modules.restapi.events_endpoint,

41
Tribler.Core.Modules.restapi.market.asks_bids_endpoint,

44
Tribler.Core.Modules.restapi.market.orders_endpoint,

46
Tribler.Core.Modules.restapi.market.transactions_endpoint,

46
Tribler.Core.Modules.restapi.search_endpoint,

38
Tribler.Core.Modules.restapi.settings_endpoint,

40
Tribler.Core.Modules.restapi.state_endpoint,

39
Tribler.Core.Modules.restapi.statistics_endpoint,

47
Tribler.Core.Modules.restapi.torrentinfo_endpoint,

33
Tribler.Core.Modules.restapi.variables_endpoint,

39
Tribler.Core.Modules.restapi.wallets_endpoint,

42

57

Tribler Documentation, Release 6.6

58 Python Module Index

Index

A
AsksEndpoint (class in Tri-

bler.Core.Modules.restapi.market.asks_bids_endpoint),
44

B
BaseAsksBidsEndpoint (class in Tri-

bler.Core.Modules.restapi.market.asks_bids_endpoint),
45

BidsEndpoint (class in Tri-
bler.Core.Modules.restapi.market.asks_bids_endpoint),
45

C
ChannelModifyRssFeedEndpoint (class in Tri-

bler.Core.Modules.restapi.channels.channels_rss_endpoint),
30

ChannelModifyTorrentEndpoint (class in Tri-
bler.Core.Modules.restapi.channels.channels_torrents_endpoint),
31

ChannelsDiscoveredEndpoint (class in Tri-
bler.Core.Modules.restapi.channels.channels_discovered_endpoint),
26

ChannelsDiscoveredSpecificEndpoint (class in Tri-
bler.Core.Modules.restapi.channels.channels_discovered_endpoint),
27

ChannelsModifyPlaylistsEndpoint (class in Tri-
bler.Core.Modules.restapi.channels.channels_playlists_endpoint),
34

ChannelsModifySubscriptionEndpoint (class in Tri-
bler.Core.Modules.restapi.channels.channels_subscription_endpoint),
28

ChannelsPlaylistsEndpoint (class in Tri-
bler.Core.Modules.restapi.channels.channels_playlists_endpoint),
34

ChannelsRecheckFeedsEndpoint (class in Tri-
bler.Core.Modules.restapi.channels.channels_rss_endpoint),
31

ChannelsRssFeedsEndpoint (class in Tri-
bler.Core.Modules.restapi.channels.channels_rss_endpoint),

31
ChannelsSubscribedEndpoint (class in Tri-

bler.Core.Modules.restapi.channels.channels_subscription_endpoint),
28

ChannelsTorrentsEndpoint (class in Tri-
bler.Core.Modules.restapi.channels.channels_torrents_endpoint),
32

create_ask_bid_from_params() (Tri-
bler.Core.Modules.restapi.market.asks_bids_endpoint.BaseAsksBidsEndpoint
method), 45

D
DownloadExportTorrentEndpoint (class in Tri-

bler.Core.Modules.restapi.downloads_endpoint),
36

DownloadsEndpoint (class in Tri-
bler.Core.Modules.restapi.downloads_endpoint),
36

E
EventsEndpoint (class in Tri-

bler.Core.Modules.restapi.events_endpoint),
41

M
MyChannelEndpoint (class in Tri-

bler.Core.Modules.restapi.channels.my_channel_endpoint),
29

O
OrdersEndpoint (class in Tri-

bler.Core.Modules.restapi.market.orders_endpoint),
46

P
parse_setting() (Tribler.Core.Modules.restapi.settings_endpoint.SettingsEndpoint

method), 40
parse_settings_dict() (Tri-

bler.Core.Modules.restapi.settings_endpoint.SettingsEndpoint
method), 40

59

Tribler Documentation, Release 6.6

R
render_DELETE() (Tri-

bler.Core.Modules.restapi.channels.channels_playlists_endpoint.ChannelsModifyPlaylistsEndpoint
method), 34

render_DELETE() (Tri-
bler.Core.Modules.restapi.channels.channels_rss_endpoint.ChannelModifyRssFeedEndpoint
method), 30

render_DELETE() (Tri-
bler.Core.Modules.restapi.channels.channels_subscription_endpoint.ChannelsModifySubscriptionEndpoint
method), 28

render_DELETE() (Tri-
bler.Core.Modules.restapi.channels.channels_torrents_endpoint.ChannelModifyTorrentEndpoint
method), 31

render_GET() (Tribler.Core.Modules.restapi.channels.channels_discovered_endpoint.ChannelsDiscoveredEndpoint
method), 26

render_GET() (Tribler.Core.Modules.restapi.channels.channels_discovered_endpoint.ChannelsDiscoveredSpecificEndpoint
method), 27

render_GET() (Tribler.Core.Modules.restapi.channels.channels_playlists_endpoint.ChannelsPlaylistsEndpoint
method), 35

render_GET() (Tribler.Core.Modules.restapi.channels.channels_rss_endpoint.ChannelsRssFeedsEndpoint
method), 31

render_GET() (Tribler.Core.Modules.restapi.channels.channels_subscription_endpoint.ChannelsSubscribedEndpoint
method), 28

render_GET() (Tribler.Core.Modules.restapi.channels.channels_torrents_endpoint.ChannelsTorrentsEndpoint
method), 32

render_GET() (Tribler.Core.Modules.restapi.channels.my_channel_endpoint.MyChannelEndpoint
method), 29

render_GET() (Tribler.Core.Modules.restapi.downloads_endpoint.DownloadExportTorrentEndpoint
method), 36

render_GET() (Tribler.Core.Modules.restapi.downloads_endpoint.DownloadsEndpoint
method), 36

render_GET() (Tribler.Core.Modules.restapi.events_endpoint.EventsEndpoint
method), 42

render_GET() (Tribler.Core.Modules.restapi.market.asks_bids_endpoint.AsksEndpoint
method), 44

render_GET() (Tribler.Core.Modules.restapi.market.asks_bids_endpoint.BidsEndpoint
method), 45

render_GET() (Tribler.Core.Modules.restapi.market.orders_endpoint.OrdersEndpoint
method), 46

render_GET() (Tribler.Core.Modules.restapi.market.transactions_endpoint.TransactionsEndpoint
method), 46

render_GET() (Tribler.Core.Modules.restapi.search_endpoint.SearchCompletionsEndpoint
method), 38

render_GET() (Tribler.Core.Modules.restapi.search_endpoint.SearchEndpoint
method), 38

render_GET() (Tribler.Core.Modules.restapi.settings_endpoint.SettingsEndpoint
method), 40

render_GET() (Tribler.Core.Modules.restapi.state_endpoint.StateEndpoint
method), 39

render_GET() (Tribler.Core.Modules.restapi.statistics_endpoint.StatisticsCommunitiesEndpoint
method), 47

render_GET() (Tribler.Core.Modules.restapi.statistics_endpoint.StatisticsDispersyEndpoint
method), 47

render_GET() (Tribler.Core.Modules.restapi.statistics_endpoint.StatisticsTriblerEndpoint

method), 48
render_GET() (Tribler.Core.Modules.restapi.torrentinfo_endpoint.TorrentInfoEndpoint

method), 33
render_GET() (Tribler.Core.Modules.restapi.variables_endpoint.VariablesEndpoint

method), 39
render_GET() (Tribler.Core.Modules.restapi.wallets_endpoint.WalletBalanceEndpoint

method), 42
render_GET() (Tribler.Core.Modules.restapi.wallets_endpoint.WalletsEndpoint

method), 43
render_GET() (Tribler.Core.Modules.restapi.wallets_endpoint.WalletTransactionsEndpoint

method), 43
render_POST() (Tribler.Core.Modules.restapi.channels.channels_playlists_endpoint.ChannelsModifyPlaylistsEndpoint

method), 34
render_POST() (Tribler.Core.Modules.restapi.channels.channels_rss_endpoint.ChannelsRecheckFeedsEndpoint

method), 31
render_POST() (Tribler.Core.Modules.restapi.channels.my_channel_endpoint.MyChannelEndpoint

method), 29
render_POST() (Tribler.Core.Modules.restapi.settings_endpoint.SettingsEndpoint

method), 40
render_PUT() (Tribler.Core.Modules.restapi.channels.channels_discovered_endpoint.ChannelsDiscoveredEndpoint

method), 27
render_PUT() (Tribler.Core.Modules.restapi.channels.channels_playlists_endpoint.ChannelsPlaylistsEndpoint

method), 35
render_PUT() (Tribler.Core.Modules.restapi.channels.channels_rss_endpoint.ChannelModifyRssFeedEndpoint

method), 30
render_PUT() (Tribler.Core.Modules.restapi.channels.channels_subscription_endpoint.ChannelsModifySubscriptionEndpoint

method), 28
render_PUT() (Tribler.Core.Modules.restapi.channels.channels_torrents_endpoint.ChannelModifyTorrentEndpoint

method), 32
render_PUT() (Tribler.Core.Modules.restapi.channels.channels_torrents_endpoint.ChannelsTorrentsEndpoint

method), 33
render_PUT() (Tribler.Core.Modules.restapi.downloads_endpoint.DownloadsEndpoint

method), 37
render_PUT() (Tribler.Core.Modules.restapi.market.asks_bids_endpoint.AsksEndpoint

method), 44
render_PUT() (Tribler.Core.Modules.restapi.market.asks_bids_endpoint.BidsEndpoint

method), 45
render_PUT() (Tribler.Core.Modules.restapi.wallets_endpoint.WalletEndpoint

method), 42

S
SearchCompletionsEndpoint (class in Tri-

bler.Core.Modules.restapi.search_endpoint),
38

SearchEndpoint (class in Tri-
bler.Core.Modules.restapi.search_endpoint),
38

SettingsEndpoint (class in Tri-
bler.Core.Modules.restapi.settings_endpoint),
40

StateEndpoint (class in Tri-
bler.Core.Modules.restapi.state_endpoint),
39

60 Index

Tribler Documentation, Release 6.6

StatisticsCommunitiesEndpoint (class in Tri-
bler.Core.Modules.restapi.statistics_endpoint),
47

StatisticsDispersyEndpoint (class in Tri-
bler.Core.Modules.restapi.statistics_endpoint),
47

StatisticsEndpoint (class in Tri-
bler.Core.Modules.restapi.statistics_endpoint),
48

StatisticsTriblerEndpoint (class in Tri-
bler.Core.Modules.restapi.statistics_endpoint),
48

T
TorrentInfoEndpoint (class in Tri-

bler.Core.Modules.restapi.torrentinfo_endpoint),
33

TransactionsEndpoint (class in Tri-
bler.Core.Modules.restapi.market.transactions_endpoint),
46

Tribler.Core.Modules.restapi.channels.channels_discovered_endpoint
(module), 26

Tribler.Core.Modules.restapi.channels.channels_playlists_endpoint
(module), 34

Tribler.Core.Modules.restapi.channels.channels_popular_endpoint
(module), 29

Tribler.Core.Modules.restapi.channels.channels_rss_endpoint
(module), 30

Tribler.Core.Modules.restapi.channels.channels_subscription_endpoint
(module), 28

Tribler.Core.Modules.restapi.channels.channels_torrents_endpoint
(module), 31

Tribler.Core.Modules.restapi.channels.my_channel_endpoint
(module), 29

Tribler.Core.Modules.restapi.downloads_endpoint (mod-
ule), 36

Tribler.Core.Modules.restapi.events_endpoint (module),
41

Tribler.Core.Modules.restapi.market.asks_bids_endpoint
(module), 44

Tribler.Core.Modules.restapi.market.orders_endpoint
(module), 46

Tribler.Core.Modules.restapi.market.transactions_endpoint
(module), 46

Tribler.Core.Modules.restapi.search_endpoint (module),
38

Tribler.Core.Modules.restapi.settings_endpoint (module),
40

Tribler.Core.Modules.restapi.state_endpoint (module), 39
Tribler.Core.Modules.restapi.statistics_endpoint (mod-

ule), 47
Tribler.Core.Modules.restapi.torrentinfo_endpoint (mod-

ule), 33

Tribler.Core.Modules.restapi.variables_endpoint (mod-
ule), 39

Tribler.Core.Modules.restapi.wallets_endpoint (module),
42

V
VariablesEndpoint (class in Tri-

bler.Core.Modules.restapi.variables_endpoint),
39

W
WalletBalanceEndpoint (class in Tri-

bler.Core.Modules.restapi.wallets_endpoint),
42

WalletEndpoint (class in Tri-
bler.Core.Modules.restapi.wallets_endpoint),
42

WalletsEndpoint (class in Tri-
bler.Core.Modules.restapi.wallets_endpoint),
43

WalletTransactionsEndpoint (class in Tri-
bler.Core.Modules.restapi.wallets_endpoint),
43

Index 61

	Tribler
	Obtaining the latest release
	Obtaining support
	Contributing
	Setting up your development environment
	Running Tribler from the repository
	Packaging Tribler
	Submodule notes

	How to contribute to the Tribler project?
	Checking out the Stabilization Branch
	Reporting bugs
	Pull requests

	Branching model and development methodology
	Branching model
	Tags
	Setting up the local repo
	Working on new features or fixes
	Getting your changes merged upstream
	Misc guidelines

	Setting up your development environment
	Windows
	OS X
	MacPorts
	HomeBrew
	Tribler
	Notes
	Linux

	Building Tribler
	Windows
	OS X
	Debian and derivatives
	Other Unixes

	Tribler REST API
	Overview
	Making requests
	Error handling
	Download states
	Endpoints

	Twisted in Tribler
	Generator functions
	Yielding Deferreds
	Caveats
	Further reading

	Indices and tables
	HTTP Routing Table
	Python Module Index

